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‘Rectangular Inner Conductors*
JAMES D. HORGANf’

Summary—A method is presented for determining the capaci-
tance of electrostatic fields which have hitherto proved intractable

because their solutions required the evaluation of hyperelliptic inte-

grals. The method is illustrated by applying it to the determination

of the characteristic impedance of a strip transmission line. The
results compare favorably with the results of existing solutions.

The method is then used to determine the characteristic impedance

of coupled strip transmission lines with inner conductors of rec-
tangular shape. Curves are included which permit the determination
of this impedance over a wide range of line proportions.

INTRODUCTION

T

HE OBJECTIVES of this paper are: 1) to pre-

sent a method for determining the capacitance of

electric fields which have hitherto proved intrac-

table because their solutions, using conformal mapping

techniques, required evaluation of hyperelliptic inte-

grals, and 2) through use of this method, to determine

the characteristic impedance of the coupled strip lines

of Fig. 1. In the method to be described, the field is

divided into two or more simpler configurations, and

ordinary con formal mapping techniques are used to

find potential distributions in each region. These distri-

butions serve to furnish a first approximation to the

correct capacitance and also provide the curvilinear

coordinate systems necessary for obtaining a second

approximation. Second approximations to the correct

potential functions are obtained by using the first terms

in Fourier series involving the curvilinear coordinates.

Parameters associated with these terms are adjusted

so that the capacitance obtained is a maximum. As a

result, the capacitance and impedance values are cor-

rect to within one or two per cent over the range of pro-

portions investigated. The method described can also

be applied to determine the permeance of magnetic

fields, the conductance of electric current fields, and the

conductance of thermal fields with similarly compli-

cated boundary shapes.

In order to present the method clearly, treatment of

the coupled strip lines is preceded by application of the

method to the simpler case of the strip transmission

line of Fig. 2. The capacitance and characteristic imped-

ance of such a line has been accurately determined, 1

and therefore a check on the accuracy of the method

is afforded. After this problem has been treated, the

method is applied to determine the characteristic imped-

ance of the coupled strip transmission lines.

* Manuscript received by the PGMTTj June 1, 1956.
I Elec. Eng. Dept., Marquette University, Milwaukee, W%.
1 N. A. Begovich, “Capacity and characteristic impedance of

strip transmission lines with rectangular inner conductors, ” IRE
TRANS., vol. MTT-3, pp. 127-133; March, 1955.
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Fig. 2—Strip line configuration.

To determine the capacitance per unit length of the

strip transmission line of Fig. 2, an insulating partition

is visualized as dividing the quadrant of Fig. 2(b) into

the regions 1 and 2. Potential functions are obtained for

each region, using conformal transformations as neces-

sary. These functions are the first approximations to

the true potential distributions. To obtain the true

distributions, an infinite Fourier series could be added

in each region, with coefficients evaluated so that all

boundary conditions, including those at the surface

common to both regions, would be satisfied. However,

there are difficulties involved in evaluating these co-

efficients. Such difficulties may be avoided by seeking a

second approximation in which only the first term of the

series in each region is retained. The approximation is

made to yield an accurate value for the capacitance by:

1) choosing a coordinate system (Fig. 3) in such a way

that individual terms in the series exactly satisfy all

boundary conditions except those at the matching sur-

face, and 2) determining the coefficients in the series

terms in a manner which yields maximum capacitance.
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Fig. 4—Fringing capacitance for strip line.

The results of such analysis, shown in Fig. 4 in compari-

son with the results of Begovich, 1 are accurate to within

two per cent of the fringe capacitance. The error, ex-

pressed as a percentage of total capacitance, is less than

two per cent.

STRIP TRANSMISSION LINE

The problem to be discussed in this section is that

of (determining the characteristic impedance of the strip

transmission line shown in Fig. 2(a). Such a line can

propagate a transverse electromagnetic wave (TENI)

for which the characteristic impedance, 20, is’

where ~, is the relative dielectric constant of the material

in the space between the electrodes, e is the permit-

tivity, and C is the capacitance per unit length. Thus,

the crux of the problem is the determination of the

capacitance. The general plan of attack is to determine

the potential distribution, the field intensity, the stored

energy, and from this, to find the relative capacitance.

in order to determine the potential distribution, an

insulating partition is visualized as dividing the field

quadrant into the regions 1 and 2 as shown in Fig. 2(b).

In region 1 the potential function which satisfies La-

‘1S. Ramo and J. R. \lThinnery, ‘{Fields and lt’aves in hIodern
Radio, ” John Vi7iley and Sons, Inc., New York, N. Y.; 1944.

place’s equation and the boundary conditions is

01(*, Y) = 2y/a, (2)

where @o in Fig. 2 is taken as unity without low of gerler-

ality. In region 2 it is convenient to express the potential

in terms of a new system of curvilinear coordinates

(a, V), selected so that

@,(u, 8) = v. (3)

Since equipotential surfaces coincide with surfaces of

constant value of the coordinate v, the coorc[inate sys-

tem (u, v) must be conformably related to the (x, y)

system and must satisfy the boundary conditions indi-

cated in Fig. 3 and stated below:

~=f); y= (); 0<%
V=l; ~=f); a/2 < y c; b/2

(4)
u = o; X=o; O<y <a/2

u = ‘ul); y = b/2; o<%.

The important relations between (x, y) and (u, v) i>re

developed in the appendix, using the Sc,hwarz-Chris-

toffel transformation. It is shown there that

24’0= K(k)/K(k!) (5)

k = cos (~a/2b) (6)

k’ = sin (~a/2b), (7)

where K(k) and K(k’) are complete elliptic integrals

of the first kind. Consideration of the above leads to a

first approximation for the capacitance of Fig. 2(a):

C/e = 81/a + 4K(k)/K(k’). (8)

To obtain a more accurate solution, the insulating part-

ition is removed and the approximate potential sc~lu-

tions are augmented as follows:

@l(*, y) = 2y/a + ~ anem2~z/a sin m2ffy/a (9)
m=1

4J2(u, V) = v + ~ bae–’”” sin mrv. (110)
.=l

F~r simplicity, (9) is written for the case. of I/a ap-

proaching infinity, although it is easily generalized by

including a negative exponential term.

Each individual term in the two series satisfies all

boundary conditions except those at the matching sur-

face, u = O. One method of obtaining the exact potential

solutions involves evaluating the coefficients am and b.

so that both the potential and the normal component of

displacement are continuous across the matching sur-

face. The difficulties associated with this method are

great, because the series involve trigonometric fu nc-

tions of two different arguments.

Another method, the one to be pursued here, involves

determining the coefficients a% and bn in such a way th at

the potential is continuous across the matching surface,
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and the capacitance attains its maximum value.:; To

pursue this method, the capacitance is expressed as

c = 2w/402, (11)

where W is the total energy stored in the field and @Ois

the total potential difference across the conductors. In

turn, W is expressed as

w = (E/2)
Sss

E2dJT, (12)

where E is the magnitude of the field intensity and V is

the volume of the field. Thus, assuming the potential

difference as unity, capacitance as a function of potential

distributions becomes

1

+4 Ss‘O[(Fkj@u)’+(f3fb,/13zJ)’]dud%(13)
00

Now if the potentials in (9) and (10) are substituted in

(13) the result is, for the case of l/a approaching in-

finity, the expression relating capacitance to the un-

determined coefficients, am and 6%.

C/e = 81/a + 4u0 + 2T ~ mam2
m

+ 2T ~ (1 – e-’’’’”) ?dln’. (14)
n

The maximum value of this capacitance is desired, sub-

ject to the condition of continuity of the potential

#(O, u) at the matching surface as expressed by

@(O, v) = 2y/a + ~ a. sin m2~y/a
.

—— v + ~ b. sin mm. (15)
n

To introduce the potential q5(0, v) into the capacitance

(14), am and bn are expressed in terms of this potential

by multiplying (15) by the appropriate sin function,

and integrating. When these results are substituted in

(IA), capacitance is expressed in terms of the potential

at the matching surface:

)
2

– 2Y/a] sin m2~Y/a dy

{s+ 2T ~ IZ(l – e-”2”””) 2 , ‘ [+(0, v)
n

— v] sin mrvdv
}2

. (16)

The specific problem at hand now is this: find the func.

s J. W. S Rayleigh, “The Theory of Sound, ” Macmillan and CO.,

Ltd., London, Eng., vol. 2, p. 175; 1896.

tion +(0, ZI) which will result in the maximum value of

the capacitance. This can be solved approximately by

assuming that the potential at the matching surface

can be represented by the first term in either of the

series in (15). That is, assume

C#J(o,v) = 2y/a + al sin 2xy/a = v + bl sin V. (17)

Then, using (17) and the relation between am and

+(0, v) as obtained from (15), al can be expressed in

terms of bl.

al = B. + B1bl (18)

s

alz

B. = (4/a) (v – 2y/a) sin 2~y/a dy (19)
o

J
al?

B1 = (4/a) (sin w) sin 2=y/a dy. (20)
o

As shown in the appendix, along the matching surface,

y and v are related as follows:

v = 1 – F(o’, k’)/Ic(k’) (21)

cos @ = (k/k’) tan ry/b. (22)

In (21), F(O’, k’) is the incomplete elliptic integral of

the first kind.

Eqs. (18)–(22) serve to uniquely determine al in terms

of bl. Eqs. (19) and (20) are integrated, using numerical

or graphical methods.

It is now possible to express the capacitance in terms

of the single parameter, bl:

C/e = 81/a + 4u0

+ 27r[(B0 + BlbJ2 + (1 – e-2”U0)b12]. (23)

When this is maximized with respect to b], the result is

If uo>>l/27r, this reduces to

– B.
bl =

1“

(24)

(25)

When (24) or (25) is substituted in (23), the capacitance

is determined. In order to compare the results of this

method with results obtained previously, 1 the capaci-

tance is written in the form

C/e = 81/a + Cf/e, (26)

where Cj is the fringe capacitance, given by

Cf/c = 4u0 + 27r[(B0 + B,b,)2 + bl’]. (27)

In Fig. 4, this fringe capacitance is plotted as a func-

tion of the ratio c/b for the case of l/b approaching

infinity. The results of Begovichl are also shown for

comparison. A maximum deviation of about two per

cent of the fringe capacitance is indicated. It should be

noted that this deviation approaches zero as I/b ap-
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preaches zero. Also, when this deviation is expressed

a.s a percentage of total capacitance, the figure is less

than two per cent.

COUPLED STRIP LINE: ODD MODE

In this section, the following problem is taken up:

for the coupled strip line operating in the odd mode,

determine the characteristic impedance. As indicated

in Fig. 1, the odd mode is excited by maintaining the

inner conductors at equal and opposite potentials with

respect to the parallel ground planes. For transverse

electromagnetic (TEM) wave propagation on such a

line, the characteristic impedance, measured from one

strip to ground, can be determined from (1), if the capac-

itance is taken as that of one strip to ground. As in the

previous example, the crux of the problem is the deter-

mination of this capacitance. Because of symmetry,

attention can be focused on the problem of determining

the capacitance of the quadrant shown in Fig. 5.
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Fig. 5—Quadrant of coupled line in odd mode.

Following the general scheme of the previous section,

insulating partitions are assumed to divide the field

into the regions marked 1, 2, and 3. In region 1, the

potential which satisfies Laplace’s equation and the

boundary conditions indicated in Fig. 5 is

41(A y) = 2*/s, (28)

where @O is taken as unity without loss of generality.

In region 2 the solution is

&(zt, ZJ) = v, (29)

where the coordinate system (ZJ, v) is that sketched in

Fig. .5. It is conformably related to the coordinate system

(x, y) and satisfies the boundary conditions indicated

in Fig. 5. The important relations between (x, y) and

(u, v) are developed in the appendix, using the Schwarz-

Christoffel transformation. It is shown there that

‘L’Lo= 2K(ko)/K(ko’) (30)

h = (tanh rev/2a) (coth T(W + s)/2a) (31)

ko’ = %/’1 – ko~. (32)

In region 3 it is impossible to write down a potential

solution with the partition in place because the field ex-

tends infinitely to the right. Practically, this situation

can be remedied by imagining a conducting plate at

zero potential to exist at some distance to the right of

the conductor as indicated in Fig. 5. In effect, the as-

sumption is made that the energy stored in that por-

tion of region 3 to the right of this condluciting plate is

negligibly small compared with the energy stored in the

entire field. The placement of this plate is somewhat

arbitrary. The choice here is a location b/2 units to the

right of the conductor. Then, in region 3 a suitable

potential is

43(.$, y) = 1 – 2(X – 1)/b. (33)

Corresponding to the above potentials, the first approxi-

mation for the capacitance of one strip to ground, loper-

ating in the odd mode, is

Co/e = 4K(k0)/K(ko’) + 2c/s + 2c/b. (34

To obtain a more accurate solution, the insulating par-

titions are removed and the approximate solutions for

potential are augmented as follows:

@l(*, y) = 2x/s + ~ a~(e~2”U/’

42(24 U) = ~ +

43(% Y) = 1 –

m= 1

+ pIL!7T./Se-~i?7Uf8) sin nZ2TX/S (35)

n=]

p=l

+ e-p2rc/~ e–p2~#/~) sin 92T(x – 1)/b. (37)

Eq. (37) is valid only for (x – 1) less than b/2.

By considering energy storage, it is possible to write

the equation for capacitance in a form analogous to

(13). By substituting the potential equations (35)---(37)

in this form, the relation between capacitance and the

coefficients am, b., d., and CP is obtained.

Ci/c = 4K(kO)/K(kc)’) + 2c/s + 2c/b

+ 7r $j (1 – e–”4”’l’)ma~2
nl=l

p=1

+ T ~ (1 – e-fi’’U0)(n)(b~2 + d~2). (38)
a= 1

In order to introduce the condition of continuity of

potential at the matching surface, these potentials are

written in terms of the coefficients:

qi(aO, v) = 2x/s + ~ (1 + e–m’”’f’)a~ sin m21rx/s
?n=l

(39)
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@(o, v) = 1 – 2(X – 1)/b

p=l

cc

s v + ~ d. sin nv. (40)
m=1

In writing (39)–(40) the following assumptions were

made:

b~e–”u” << d~. ‘” (41)

It is now possible to relate capacitance to the potentials

at the matching surfaces by determining the Fourier

coefficients as functions of these potentials from (39)–

(40) and substituting these expressions in (38). As in

the previous example, these functions 4(zL0, v) and

q5(0, v) must then be chosen to result in the maximum

value of capacitance. The problem is solved approxi-

mately by assuming the form of these potential functions

as

O(ZJO,v) = v + bl sin TV = 2x/s + al(l + e–z”’[’) sin 27rx/s

0(0, v) = v + a?l sin wv = 1- 2(* – 1)/b

+ 6,(1 + e-’~’fb) sin 27r(x – I)/b. (42)

Using these approximations, al and c1 can be related to

bl and dl:

al = IL) + Blbl (43)

c1 = Do + Dldl (44)

4

s

Slz

BO =
s(1 + e-2~’/’) o

(v – 2x/s) sin 27rx/s dx (45)

4 sSlz

B1 = (sin TV) sin 27rx/s dx (46)
s(1 + e–2~Ci’) o

4
DO =

~(1 + e–2n/b)

“sb12

[v – 2(x – 1)/b] sin 27r(x – 1)/b dx (47)
o

4 sb/2

D, = (sin m) sin 27r(x – 1)/b dx. (48)
b(l + e-’~’fo) o

As shown in the appendix, along the matching surfaces,

x and v are implicitly related by the following:

v = 1 – F(o’, k’o’)/K(ko’) (49)

sin 6’ = (1/ko’)til – l/t2 (50)

t’–l
t = (l/k(l) —

t’+1
(51)

1 – ko sinhz zx/a
t’=————

1 + k. sinhz ~s/2a “
(52)

Eqs. (43)–(52) serve to determine al in terms of bl and

to determine c1 in terms of dl. The integrations in

(45)-(48) are carried out using numerical or graphical

methods. It is now possible to express the capacitance

in terms of the two parameters bl and dl:

Co/c = 4K(kO)/K(kO’) + 2c/s + 2c/b

+ 7r(l– e-’rcfs) (3o + MJZ

+ 7(1 – e-zmu’)(b,z + d,z)

+ z(1 – e-’mcl~) (D. + Dldl)z. (53)

When this is maximized with respect to bl and then

with respect to dl, the results are

– BO
b, =

l– e—z TrwJ 1
(54)

BI +
I _ e–.l.cls ~

(55)

When the last two equations are substituted in (53), the

capacitance is determined. In order to present curves

from which capacitance is easily obtained, it is conven-

ient to rewrite (53) as

cO/e = 4K(ko)/K(ko’) + 2ACf’/c + 2ACj’o/e. (56)

In this, ko and ko’ are given by (31)–(32) and ACf’/c

and ACfO’/e, plotted in Figs. 6 and 7, are defined as

ACf’/e = c/b + (m/2) [(1 – e–zmuo)dlz

+ (1 – e-’”clb)(DO + Dldl)’]

ACjO’/e = c/s + (7r/2) [(1 – e–2mUO)b12

+ (1 – e-4”’l’)(B0 + B,bJ2]. (57)

The notation used above is consistent with that used

in Cohn.4

The first term in (56) is the capacitance of one strip

to ground, operating in the odd mode, when the thick-

ness c is zero. A Cf ‘/6 is the correction for the additional

fringing from the outer end of one conductor to one

ground plane. ACf Of/e is the correction for additional

fringing from one half of the inner end of one conductor

to the zero potential surface. Fig. 6 is a plot of the fring-

ing capacitance correction for the outer end of the con-

ductor. The correction is practically independent of w

as long as w/b is greater than 0.2 and is independent

of s as long as s/b is greater than unity. Fig. 7 shows a

similar plot for the fringing capacitance correction at

the inner end.

COUPLED STRIP LINE: EVEN MODE

To determine the characteristic impedance for the

line operating in the even mode, in which the inner

conductors are maintained at equal potentials with

A S. B. Cohn, “Shielded coupled-strip transmission line,” IRE
TRANS., vol. MTT-3, pp. 29-38; October, 1955.
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respect to the ground planes, attention is focused on

one quadrant of the field as shown in Fig, 8. Insulating

partitions are visualized as dividing the field into three

regions as indicated. Following a scheme which parallels

that for the odd mode, a first approximation for the

capacitance can be written as

co/e = 4K(kJ/K(ke’) + 2c/tJ, (58)

where CJe is the capacitance of one strip to ground and

k. and ke’ are given by

k. = (tanh mv/2a)(tanh T(W + s)/2a) (59)

k.’ = <1 – k@2. (60)

With the partitions as shown, no field can exist in region

1 and therefore the corresponding capacitance term is

zero.
A second approximation for the potentials can be

written as

+1(% Y) = fl(o, 0) + [1 – 7J(0, o) ]2x/s (61)

with Rectangular Inner Conductors
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Fig. 8—Quadrant of coupled line in even mode.

where v(O, O) is the value of v for x = O and y =0. In this

case the added series solution is not introduced in

~1($, Y) since the relatively weak field in region 1 con-
tributes little to the total capacitance. Fcdlowing the

procedure set out in the preceding section, an expression

similar to (56) is obtained:

C./c = 4K(k J/K(k ;) + 2AC//e + 2ACf .’/e. (64)

Here, kg and ke’ are given by (59)–(60), ACf ‘/e is !{iven

by Fig. 6 for most practical cases, and AC,.’/e is de-

fined as

ACfJ/e = [1 – v(O, O) ]2(c/.s). (65)

42(24 v) = v + ~ dn(e–””” + e–z”””oe”””) sin mm (62)

For most proportions, this term is negligible compared

with the other terms in the expression for capacitance.

APPENDIX

CCIORDINATE SYSTEM: STRIP LINE

Fig. 9 shows the transformations used in establishing

the coordinate system suitable for the strip transmission

line of Fig. 2. According to the Schwarz-Christoffel

theorem, the variables z and t are related by

dz/dt = A1(t)-l@(t –“ l)–l/’. (66)

This can be integrated to give

z = (j%/2) [1/2 — (1/7r) sin–1(2t — 1) j (67)

where the constant of integration has been adjusted

to satisfy the boundary condition at z = O. Again, relat-

ing w and tby means of the Schwarz-Christoffel method,.,
A’&

dw/dt = B,(t) -1/2(t – 1)-112(f – k2)--1/2 ~ ‘~ (68)

which, when integrated, yields

W = Z~O[l – F(19, k)/K(k) ] + jl (69)

sin O = ~~/k. (70).=1
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Fig. 9—Transformations for strip line coordinate system.

Here, F(O, k) is the incomplete elliptic integral of the

first kind; K(k) is the complete elliptic integral of the

first kind. BI has been made equal to –z40/2K(k) in order

to satisfy the boundary conditions at t = O and t= k2.

Unforuntately, (69) is useful only in the range O<t < k’.

To obtain an expression which is useful along the match-

ing surface, u = O, the transformation

t’ = 1 – &/t (71)

is utilized. Then

dw/dt’ = (–jtio/2K(k))(t’ – 1)-1/2 (t’ – .Zz)-’l’(t’)-’l’ (72)

& = <1 – k2.

Eq. (72) can be integrated to give

w = j [1 — (2Lo)F(#,

sin 0’ = ~~/k’.

(73)

0/K(k)] (74)

(75)

In order to satisfy the boundary condition at t’= k2,

ZLO= K(k)/A’(k’),

and therefore, along u = O,

V=l – F(O’, k’)/K(k’).

In order to relate 0’ and k‘ directly to the z

(71), (73), and (75) can be manipulated to

cos 0’ = (k/k’) tan ry~b.

(76)

(77)

plane, (67),

give

(78)

COORDINATE SYSTEMS: COUPLED LINES

Fig. 10 shows the transformations used in establishing

the coordinate system suitable for the odd mode opera-

tion of the coupled strip line shown in Fig. 5. According

to the Schwarz-Christoffel transformation, z and t’

are related by

dz/dt’ = Al(t’)–1/2(t’ – P)–1/2, (79)

which may be integrated to give
——

z = (a/z) In [~t’/–p + <(t’/–p) + 1]. (80)

[--x
,U=ua ,

V.o “.”~ “= [ “,0

~----~
—.——

t’=- m o ~ I+ k. 03

1+ko WO

m

April

V,o “.u~ v=I u. (J v= o
––-mm’yll--~m

t ,-0)~~ -1
+., ~piJwJw,+=.l ‘ko

IJ.UO, EzEEl

Fig. 10—Transformations for odd mode coordinate system.

Along y = O, (80) can be manipulated to give the relation

between t’and x:

1 – kO sinhz rx/a~1= (81)
1 + k. sinh’ ~s/2a “

Further, by considering the value of t’at x = s/2 and at

x = (w +s/2), the expression for ko can be obtained.

k. = (tanh ~w/2a)(coth T(W + s)/2a). (82)

Inspection of Fig. 11 shows that tand t’are related by

1 t’–l
t=——

kot’+1”

Y V=o m
q:;::’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’”““L\

t’=-m
I+ke

.$ ]t.P % FFe t’=+m——— -——— ——-
, u=u; -p\\’’\’\’’’’\ \\\\\’l U=o xV=l

(83)

Fig. 1l—Transformations for even mode coordinate system.

Now w and t can be related by means of the Schwarz-

Christoffel transformation:

dzw/dt = BI(t2 — 1)–1/2(t2 — l/k*) –1J2, (84)

which may be ingerated to give

W = [K(ko)/K(ko’) ] [1 – F(O, ko)/K(ko) ] + jl (W

sin /3 = t. (86)

Eq. (85) is practical y useful only in the range – 1 <t

<1, that is, along v =1. To obtain an expression which

is useful along the matching surfaces u = O and u = ao,

(85) can be transformed to’

5 P. F. Byrd and M. D. Friedmann, “Handbook of Elliptic In-
tegrals for Engineers and Physicists, ” Springer Verlag, Berlin.
Germany, Art. 115.02; 1954.
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w = ‘u + j [1 – F(6’, ko’)/K(ko’) 1 (87)

ko’ = {1 – koz (88)

..—
sin 6’ = (l/ko’)~l — l/t2. (89)

Eqs. (87), (89), (83), and (81) give the implicit relation

between x and v along the matching surfaces.

Fig. 11 shows the z plane for the even mode operation

of the coupled strip line. From it, it can be seen that the

tplane, the t’plane, and the w plane sketches are identi-

cal with the odd mode sketches, except for replacing

kO by k.. Eqs. (89) and (86) apply, and by analogy with

(85),

w = [K(ke)/K(ke’)][l – F(O, kJ/K(k J] + jl. (90)

Along y= O, by analogy with (87),

w = Z~+ j[l – F’(O’, ke’)/K(.ke’)]. (91)

Eq. (79) applies to Fig. 11 as well as to Fig. 10. When

it is integrated, and boundary

the result is
——

z = (a/r) in [#t’/p +

99

conditions are applied,

ti~~~i]. (92)

Along y = O this can be written as

1 – k. cosh2 ~x/a
t’=— .

1 + k. cosh2 irs/2a
(93)

By considering the value of t’at x =s/2 and at x = (w

+s/2) the expression fork. can be obtained:

k, = (tanh ~w/2a)(tanh T(W + s)/2!a). (94)

Eqs. (91), (89), (83), and (93) serve to give the implicit

relation between x and v along y = O.
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The Impedance of a Wire Grid Parallel to a

Dielectric Interface*
JAMES R. WAIT?

Summary-Analysis is given for the problem of reflection of a including the case where the wire spacing is COmp81rabh3
plane wave at oblique incidence on a wire grid which is parallel to a to the wavelength. His formulas have been reduced,
plane interface between two homogeneous dielectrics. It is assumed

tlr at the wire grid is a periodic structure and consists of thin cylindri-
extended, and applied by other authors since that

cd wires of homogeneous material. The equivalent circuit is derived time.3–11 A very illuminating treatment ha~; been given

where it is shown that the space on either side of the interface can by MacFarlane5 who indicated that a $ngle grid can
be represented by a transmission line, and the grid itself is repre- be represented by an impedance shunted across an
sented by a pure shunt element across one of the lines. infinite transmission line whose characteristic innped-

INTRODUCTION ante is proportional to the intrinsic impedance of the

: HERE HAVE been many investigations of the

T
electromagnetic properties of thin parallel wires

composed of conductive material. The first quan-

titative study was made by Lambl in 1898 who con-

sidered the plane wave incident normally on the grid.

He showed that if the diameter, 2a, of the parallel

wires was small, the reflection and transmission could

be varied by changing the spacing. In 1914, von Igna-

towsky2 made a very exhaustive analysis of the scatter-

ing of incident plane waves by single metallic grids

* Manuscript received by the PGMTT, June 1, 1956.
~ National Bureau of Standards, Boulder, Colo.
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