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Coupled Strip Transmission Lines with

Rectangular Inner Conductors*
JAMES D. HORGAN?

Summary—A method is presented for determining the capaci-
tance of electrostatic fields which have hitherto proved intractable
because their solutions required the evaluation of hyperelliptic inte~
grals. The method is illustrated by applying it to the determination
of the characteristic impedance of a strip transmission line. The
results compare favorably with the results of existing solutions.
The method is then used to determine the characteristic impedance
of coupled strip transmission lines with inner conductors of rec-
tangular shape. Curves are included which permit the determination
of this impedance over a wide range of line proportions.

INTRODUCTION

HE OBJECTIVES of this paper are: 1) to pre-

sent a method for determining the capacitance of

electric fields which have hitherto proved intrac-
table because their solutions, using conformal mapping
techniques, required evaluation of hyperelliptic inte-
grals, and 2) through use of this method, to determine
the characteristic impedance of the coupled strip lines
of Fig. 1. In the method to be described, the field is
divided into two or more simpler configurations, and
ordinary conformal mapping techniques are used to
find potential distributions in each region. These distri-
butions serve to furnish a first approximation to the
correct capacitance and also provide the curvilinear
coordinate systems necessary for obtaining a second
approximation. Second approximations to the correct
potential functions are obtained by using the first terms
in Fourier series involving the curvilinear coordinates.
Parameters associated with these terms are adjusted
so that the capacitance obtained is a maximum. As a
result, the capacitance and impedance values are cor-
rect to within one or two per cent over the range of pro-
portions investigated. The method described can also
be applied to determine the permeance of magnetic
fields, the conductance of electric current fields, and the
conductance of thermal fields with similarly compli-
cated boundary shapes.

In order to present the method clearly, treatment of
the coupled strip lines is preceded by application of the
method to the simpler case of the strip transmission
line of Fig. 2. The capacitance and characteristic imped-
ance of such a line has been accurately determined,?
and therefore a check on the accuracy of the method
is afforded. After this problem has been treated, the
method is applied to determine the characteristic imped-
ance of the coupled strip transmission lines.

* Manuscript received by the PGMTT, June 1, 1956.
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Fig. 2—Strip line configuration.

To determine the capacitance per unit length of the
strip transmission line of Fig. 2, an insulating partition
is visualized as dividing the quadrant of Fig. 2(b) into
the regions 1 and 2. Potential functions are obtained for
each region, using conformal transformations as neces-
sary. These functions are the first approximations to
the true potential distributions. To obtain the true
distributions, an infinite Fourier series could be added
in each region, with coefficients evaluated so that all
boundary conditions, including those at the surface
common to both regions, would be satisfied. However,
there are difficulties involved in evaluating these co-
efficients. Such difficulties may be avoided by seeking a
second approximation in which only the first term of the
series in each region is retained. The approximation is
made to yield an accurate value for the capacitance by:
1) choosing a coordinate system (Fig. 3) in such a way
that individual terms in the series exactly satisfy all
boundary conditions except those at the matching sur-
face, and 2) determining the coefficients in the series
terms in a manner which yields maximum capacitance.
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place’s equation and the boundary conditions is
e o2, y) = 2y/a, @)
where ¢ in Fig. 2 is taken as unity without loss of gener-
v=0 X ality. In region 2 it is convenient to express the potential
in terms of a new system of curvilinear coordinates
Fig., 3—Strip line coordinate system. (u, v), selected so that
70 éa2(u, v) = 2. (3)
Since equipotential surfaces coincide with surfaces of
60 constant value of the coordinate v, the coordinate sys-
/ tem (%, v) must be conformally related to the (x, ¥)
50 system and must satisfy the boundary conditions indi-
4 cated in Fig. 3 and stated below:
40 /'_%""” v=0; y=0 0<«
7= 1; x = 0; a/2 < y < b/2 @
30 e uw = 0; x = 0; 0<y<a/2
Jle = uy; y=0b/2; 0< x
20~
N gg'_;ESE"NCEI The important relations between (x, ) and (%, v) are
10 developed in the appendix, using the Schwarz-Chris-
toffel transformation. It is shown there that
2 4 € 6 8 1o o = K(k)/K(F) (5)
b k = cos (ma/2b) (6)
Fig. 4—Fringing capacitance for strip line. B = sin (ra/20), %

The results of such analysis, shown in Fig. 4 in compari-
son with the results of Begovich,! are accurate to within
two per cent of the fringe capacitance. The error, ex-
pressed as a percentage of total capacitance, is less than
two per cent.

STRIP TRANSMISSION LINE

The problem to be discussed in this section is that
of determining the characteristic impedance of the strip
transmission line shown in Fig. 2(a). Such a line can
propagate a transverse electromagnetic wave (TEM)
for which the characteristic impedance, Z,, is?

Ve 1207 e
T ¢ e C

Zo (1

where €, is the relative dielectric constant of the material
in the space between the electrodes, € is the permit-
tivity, and C is the capacitance per unit length. Thus,
the crux of the problem is the determination of the
capacitance. The general plan of attack is to determine
the potential distribution, the field intensity, the stored
energy, and from this, to find the relative capacitance.

In order to determine the potential distribution, an
insulating partition is visualized as dividing the field
quadrant into the regions 1 and 2 as shown in Fig. 2(b).
In region 1 the potential function which satisfies La-

* S, Ramo and J. R. Whinnery, “Fields and Waves in Modern
Radio,” John Wiley and Sons, Inc., New York, N.Y.; 1944.

where K(k) and K (k') are complete elliptic integrals
of the first kind. Consideration of the above leads to a
first approximation for the capacitance of Fig. 2(a):

C/e = 81/a + 4K(E)/K (k). (8)

To obtain a more accurate solution, the insulating par-
tition is removed and the approximate potential solu-
tions are augmented as follows:

é1(x, ¥) = 2y/a + 2 ane™ws/%sin m2wy/a (9)

m==1

©0
= v 4 D bye " sin no.

n=]1

¢2<M, 7)) (][0)

F,or simplicity, (9) is written for the case of 1/a ap-
proaching infinity, although it is easily generalized by
including a negative exponential term.

Each individual term in the two series satisfies all
boundary conditions except those at the matching sur-
face, #=0. One method of obtaining the exact potential
solutions involves evaluating the coefficients a,, and b,
so that both the potential and the normal component of
displacement are continuous across the matching sur-
face. The difficulties associated with this method are
great, because the series involve trigonometric func-
tions of two different arguments.

Another method, the one to be pursued here, involves
determining the coefficients a., and b, in such a way that
the potential is continuous across the matching surface,
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and the capacitance attains its maximum value.* To
pursue this method, the capacitance is expressed as

C = 2W/¢e?, 1

where W is the total energy stored in the field and ¢ is
the total potential difference across the conductors. In
turn, W is expressed as

W = (¢/2) f f f EXdV,

where E is the magnitude of the field intensity and V'is
the volume of the field. Thus, assuming the potential
difference as unity, capacitance as a function of potential
distributions becomes

(12)

aj2 0
Cle=4 f f [(9:/02)% -+ (991/0y)*)dxdy

—|—4f01f0u0[(6¢2/6u)2+ (365/00)%)dudv.  (13)

Now if the potentials in (9) and (10) are substituted in
(13) the result is, for the case of 1/a approaching in-
finity, the expression relating capacitance to the un-
determined coefficients, a,, and &,.

Cle = 81/a + 4ug + 21 2, may?

+ 21 2 (1 — et pp,2, (14)

n

The maximum value of this capacitance is desired, sub-
ject to the condition of continuity of the potential
¢(0, v) at the matching surface as expressed by

#(0, ) = 2y/a + Y a,sin m2ry/a

v+ D by, sin nro. (15)
To introduce the potential ¢(0, v) into the capacitance
(14), a. and b, are expressed in terms of this potential
by multiplying (15) by the appropriate sin function,
and integrating. When these results are substituted in
(14), capacitance is expressed in terms of the potential
at the matching surface:

4

a/?
Cle = 81/a + duy + 27 m{(4/a) f [6(0, v)
—2v/a] sin 77127ry/ady}2

+ 27 Zn(l — g n2wuo) {2[ [¢(0, )

n

9

— ] sin mrvdv} . (16)
The specific problem at hand now is this: find the func-

# J. W. S Rayleigh, “The Theory of Sound,” Macmillan and Co.,
Ltd., London, Eng., vol. 2, p. 175; 1896.
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tion ¢(0, v) which will result in the maximum value of
the capacitance. This can be solved approximately by
assuming that the potential at the matching surface
can be represented by the first term in either of the
series in (15). That is, assume

¢(0,9) = 2y/a + aysin 2ry/a ~ v + by sinv. (17)

Then, using (17) and the relation between @, and
¢(0, v} as obtained from (15), a; can be expressed in
terms of &;.

ay By + Blbl

(18)

Bo

Ii

a2
(4/a)f (v — 2v/0) sin 2ry/ady (19

aj2
B, = (4/a) f (sin ) sin 27ry/a dy. (20)

As shown in the appendix, along the matching surface,
y and v are related as follows:

v=1—F(, k)/K(%)
cos 0 = (k/F') tan my/b.

(21)
(22)
In (21), F(6', &’) is the incomplete elliptic integral of
the first kind.

Eqgs. (18)—(22) serve to uniquely determine @, in terms
of ;. Egs. (19) and (20) are integrated, using numerical
or graphical methods.

It is now possible to express the capacitance in terms
of the single parameter, b;:

C/e = 81/a + 4u,
+ 22 [(Bo + Bib)? + (1 — e2mw)p2]. (23)
When this is maximized with respect to &, the result is

—BoB,

by = . (24)
1 _ e—27ruo + B12
If 4o>>1/2w, this reduces to
—Bo
by = ] (25)
Bi+ —
By

When (24) or (25) is substituted in (23), the capacitance
is determined. In order to compare the results of this
method with results obtained previously,! the capaci-
tance is written in the form .

C/e = 81/a + Cy/e, (26)
where C; is the fringe capacitance, given by
Ci/e = 4ug + 2x[(Bo + Biby)* + b:2]. (27

In Fig. 4, this fringe capacitance is plotted as a func-
tion of the ratio ¢/b for the case of 1/b approaching
infinity. The results of Begovich! are also shown for
comparison. A maximum deviation of about two per
cent of the fringe capacitance is indicated. It should be
noted that this deviation approaches zero as 1/b ap-
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proaches zero. Also, when this deviation is expressed
as a percentage of total capacitance, the figure is less
than two per cent.

CouprLeED STRIP LINE: ODD MODE

In this section, the following problem is taken up:
for the coupled strip line operating in the odd mode,
determine the characteristic impedance. As indicated
in Fig. 1, the odd mode is excited by maintaining the
inner conductors at equal and opposite potentials with
respect to the parallel ground planes. For transverse
electromagnetic (TEM) wave propagation on such a
line, the characteristic impedance, measured from one
strip to ground, can be determined from (1), if the capac-
itance is taken as that of one strip to ground. As in the
previous example, the crux of the problem is the deter-
mination of this capacitance. Because of symmetry,
attention can be focused on the problem of determining
the capacitance of the quadrant shown in Fig. 5.

0=0 .
f
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____ _____ __t_ 3
\._!_I)__\ 9=0o § (3 g f{?__i

]
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U-to v=1 75 5 25 u=0

(b) COORDINATE SYSTEM

Fig. 5—Quadrant of coupled line in odd mode.

Following the general scheme of the previous section,
insulating partitions are assumed to divide the field
into the regions marked 1, 2, and 3. In region 1, the
potential which satisfies Laplace’s equation and the
boundary conditions indicated in Fig. 5 is

é1(x, y) = 2a/s,

where ¢, is taken as unity without loss of generality.
In region 2 the solution is

$a(u, 1) = v, (29)

where the coordinate system (z, v) is that sketched in
Fig. 5. It is conformally related to the coordinate system
(x, ¥) and satisfies the boundary conditions indicated
in Fig. 5. The important relations between (x, ¥) and
(u, v) are developed in the appendix, using the Schwarz-
Christoffel transformation. It is shown there that

uy = 2K (ko)/K(ko')
= (tanh ww/2a)(coth w(w + 5)/2a)
k' = /1 — ko

(28)

(30)
(31)
(32)
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In region 3 it is impossible to write down a potential
solution with the partition in place because the field ex-
tends infinitely to the right. Practically, this situation
can be remedied by imagining a conducting plate at
zero potential to exist at some distance to the right of
the conductor as indicated in Fig. 5. In effect, the as-
sumption is made that the energy stored in that por-
tion of region 3 to the right of this conducting plate is
negligibly small compared with the energy stored in the
entire field. The placement of this plate is somewhat
arbitrary. The choice here is a location 5/2 units to the
right of the conductor. Then, in region 3 a suitable
potential is

o3z, y) =1 — 2(x — 1)/0.
Corresponding to the above potentials, the first approxi-

mation for the capacitance of one strip to ground, oper-
ating in the odd mode, is

Co/e = 4K (ko)/K (ko) + 2¢/s + 2¢/b.

To obtain a more accurate solution, the insulating par-
titions are removed and the approximate solutions for
potential are augmented as follows:

(33)

(39

d)l(xy y) = 2x/s + Z am(em.27ry/3

m=1

4 gmimclsg—miTylsy gin m2nx/s (35)
¢a(,0) = v+ ), (bue w0 + due) sin nav  (36)
n=1
bu(x, y) = 1 — 2(x — 1)/b 4+ D cy(errmvle
pe=l
4¢Pl gp2Tuldy sin p2mw(x — 1)/b.  (37)

Eq. (37) is valid only for (x—1) less than 5/2.

By considering energy storage, it is possible to write
the equation for capacitance in a form analogous to
(13). By substituting the potential equations (35)~(37)
in this form, the relation between capacitance and the
coefficients @m, bn, ds, and ¢, is obtained.

Cofe = 4K (ko)/K (ko) + 2¢/s + 2¢/b

+ Z (1 — e~m™7el)ma,,?

m==1

+ T Z (1 - e—p47rc/b)p6p2

p=1

w3 (1 = ) (n) (b da2).

n=1

(38)

In order to introduce the condition of continuity of
potential at the matching surface, these potentials are
written in terms of the coefficients:

Il

2x/s + 2, (1 + em2mel®)q,, sin m2rx/s

me=1

¢(Mo, 7))

2

7 -+ Z b, sin nmv 39
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¢0,2) =1—2(x—1)/b

+ i (1 4 e #2me/b)¢, sin p2a(x — 1)/

p=1

0
~ v+ 2. d,sin .

n=1

(40)

In writing (39)—(40) the following assumptions were
made:

dne™0 KL by,

bpemm40 K dp. (41)

It is now possible to relate capacitance to the potentials
at the matching surfaces by determining the Fourier
coefficients as functions of these potentials from (39)~
(40) and substituting these expressions in (38). As in
the previous example, these functions ¢(ue, v) and
¢(0, v) must then be chosen to result in the maximum
value of capacitance. The problem is solved approxi-
mately by assuming the form of these potential functions
as
&(tho, ¥) = v+ bysinmv =~ 2x/s + a:(1 + e*7°/%) sin 2xa/s
$(0,9) =v+ disinmy =~ 1 —2(x — 1)/b
+ (1 + e27e/%) sin 2n(x — 1) /b. (42)

Using these approximations, ¢; and ¢; can be related to
b, and dq:

a; = Bo -+ Bibs (43)
61 = Dy + Did; (44)
4 s/2
By = mﬁ (v — 2x/s) sin 27x/s dx  (45)
4 sf2
By = mfo (sin 79) sin 27 x/s dx (46)
4
Dy = ———
b(l + e—21rc/b)
b/2 -
. f [v — 2(x — 1)/b] sin 2x(& — 1)/bdx 47
0
4 b/2
S S— i in 27(x — :
D, R e_m/b)j; (sin 7o) sin 2 (x — 1)/b dx. (48)

As shown in the appendix, along the matching surfaces,
x and v are implicitly related by the following:

p=1-— F(e,, kol)/K(kol) (49)

sin ' = (1/k)/1 — 1/12 (50)
t——(l/k)t,—l 51

= Wk (51)

v 1 — k¢ sinh?wx/a 52)

T 1+ ky sinh? 7s/2a
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Eqgs. (43)—(52) serve to determine a; in terms of &; and
to determine ¢; in terms of dy. The integrations in
(45)—(48) are carried out using numerical or graphical
methods. It is now possible to express the capacitance
in terms of the two parameters b, and d;:
Co/e = 4K(ko)/K(ky') + 2¢/s -+ 2¢/b
+ w(1 — e747¢l*)(By + Biby)®
+ 71'(1 —_ 6_27m°)(b12 + d12)
+ (1 — e (Dy + D1dy)™. (53)

When this is maximized with respect to & and then
with respect to d;, the results are

_BO
P it °
1 —_— 6—47rc/s Bl
—DO
dl = 1 _ 3“27ru0 1 (55)
D, +

1 — e—-47rc/b Dl

When the last two equations are substituted in (53), the
capacitance is determined. In order to present curves
from which capacitance is easily obtained, it is conven-
ient to rewrite (33) as

Cofe = 4K (ke)/K (ko) + 28C) /e + 2AC,"v/e.  (56)

In this, &y and k¢’ are given by (31)—(32) and AC;'/e
and AC’ /e, plotted in Figs. 6 and 7, are defined as

AC/ Je = ¢/b+ (m/2)[(1 — e 2ruo)d,?

+ (1 — e#7%)(Dy + D1dy)?]
ACsfe = ¢/s + (x/2)[(1 — e 2mu0)p,2

+ (1 — e47ol5)(By + Buby)?]. (57)

The notation used above is consistent with that used
in Cohn.?

The first term in (56) is the capacitance of one strip
to ground, operating in the odd mode, when the thick-
ness ¢ is zero. AC;’ /e is the correction for the additional
fringing from the outer end of one conductor to one
ground plane. ACyy'/e is the correction for additional
fringing from one half of the inner end of one conductor
to the zero potential surface. Fig. 6 is a plot of the fring-
ing capacitance correction for the outer end of the con-
ductor. The correction is practically independent of w
as long as w/b is greater than 0.2 and is independent
of s as long as s/b is greater than unity. Fig. 7 shows a
similar plot for the fringing capacitance correction at
the inner end.

CouPLED STRIP LINE: EVEN MODE

To determine the characteristic impedance for the
line operating in the even mode, in which the inner
conductors are maintained at equal potentials with

¢S, B. Cohn, “Shielded coupled-strip transmission line,” IRE
TrANS., vol. MTT-3, pp. 29-38; October, 1955.
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Fig. 7—Correction to inner fringing capacitance.

respect to the ground planes, attention is focused on
one quadrant of the field as shown in Fig. 8. Insulating
partitions are visualized as dividing the field into three
regions as indicated. Following a scheme which parallels
that for the odd mode, a first approximation for the
capacitance can be written as

Co/e = 4K (k)/K (k) + 2¢/b, (58)

where C,/e is the capacitance of one strip to ground and
k. and &, are given by

k, = (tanh mw/2e¢)(tanh #(w + s)/2a)
kS = /1 — k.

(59)
(60)

With the partitions as shown, no field can exist in region
1 and therefore the corresponding capacitance term is
zero.

A second approximation for the potentials can be
written as

¢1(x, y) = 2(0, 0) + [1 — (0, 0) |2/s (61)

o
Ga(1t, 1) = v+ D, dufe ™ 4 g 2nmuognm) sin pqy

n=1

(62)

Horgan: Strip Lines with Rectangular Inner Conduciors 97

f ? -
! (2) %, T
_ %

v=1 .76 .5 .25
(b) COORDINATE SYSTEM

Fig. 8—Quadrant of coupled line in even miode.

d3(x, ) = 1 — 2(x — 1)/b+ D cp(er?nult

=1

— e=P2rulbgpreld) sin pin(x — 1)/b  (63)

where (0, 0) is the value of » for x =0 and y=0. In this
case the added series solution is not introduced in
¢1(x, ¥) since the relatively weak field in region 1 con-
tributes little to the total capacitance. Following the
procedure set out in the preceding section, an expression
similar to (56) is obtained:

Cofe = 4K(k)/K (k) + 2AC/ [e + 2AC; ! fe.  (64)

Here, k. and k.” are given by (59)-(60), AC;' /e is given
by Fig. 6 for most practical cases, and AC'/e is de-
fined as

ACy, /e = [1 — (0, 0)12(c/s). (65)

For most proportions, this term is negligible compared
with the other terms in the expression for capacitance.

APPENDIX

COORDINATE SYSTEM: STRIP LINE

Fig. 9 shows the transformations used in establishing
the coordinate system suitable for the strip transmission
line of Fig. 2. According to the Schwarz-Christoffel
theorem, the variables 3 and ¢ are related by

dz/dt = A (12t — 1)~z (66)
This can be integrated to give
5= (8/2)[1/2 — (1/7) sin1(2t — 1) ] (67)

where the constant of integration has been adjusted
to satisfy the boundary condition at z=0. Again, relat-
ing w and ¢ by means of the Schwarz-Christoffel method,

=8 Jw/dt = BuH—t — 1)1t — k)12 17 (68)
which, when integrated, yields

uo[l — F8, B)/K(R)] + 1
sin @ = +/t/k.

(69)
(70)

w
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Fig. 9—Transformations for strip line coordinate system.

Here, F(8, k) is the incomplete elliptic integral of the
first kind; K (k) is the complete elliptic integral of the
first kind. B, has been made equal to — /2K (k) in order
to satisfy the boundary conditions at =0 and =42
Unforuntately, (69) is useful only in the range 0 <t <k2
To obtain an expression which is useful along the match-
ing surface, # =0, the transformation

Y =1— k%t (71)
is utilized. Then

dw/dt’ = (—juo/2K(k))(!' — 1)1 —

KR (12)

B =+1-— k. (73)
Eq. (72) can be integrated to give

w = j[1 — (w)F (', ¥)/K(k)] (74)

sin 0 = /7/ k. (75)

In order to satisfy the boundary condition at ¢’ =42,

uy = K(k)/K(F), (76)
and therefore, along #=0,
v=1—F@, F)/K(F). . (77)

In order to relate 8’ and &’ directly to the z plane, (67),
(71), (73), and (75) can be manipulated to give

cos 0" = (k/k") tan wy/b. (78)

CoORDINATE SyYsSTEMS: COUPLED LINES

Fig. 10 shows the transformations used in establishing
the coordinate system suitable for the odd mode opera-
tion of the coupled strip line shown in Fig. 5. According
to the Schwarz-Christoffel transformation, z and ¢’
are related by

dz/dt = A1) — p)-LIe, (79)
which may be integrated to give
g = (a/m) In [V¥/—p+ {T/~p) +1]. (80)

Fig. 10—Transformations for odd mode coordinate system.

Along y=0, (80) can be manipulated to give the relation
between ¢’ and x:

, 1 — ko sinh®wx/a

U= - . (81)
1 + k¢ sinh® #s/2a

Further, by considering the value of " at x=s/2 and at

x=(w-+s/2), the expression for k¢ can be obtained.
ko = (tanh 7w/2a)(coth m(w + 5)/2a). (82)

Inspection of Fig. 11 shows that ¢ and ¢’ are related by

14¢7-1
=TT (83)
o b
2 PLANE
T o
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‘U':uo vel u=o X

Fig. 11—Transformations for even mode coordinate system.

Now w and ¢ can be related by means of the Schwarz-
Christoffel transformation:

dw/dt = By(12 — 1)~ — 1/k2)~12, (84)

which may be ingerated to give
w = [K(ko)/K(kd) ][t — F(6, ko)/K(ko)] + j1 (85
sin§ = ¢. (86)

Eq. (85) is practically useful only in the range —1<¢
<1, that is, along v=1. To obtain an expression which
is useful along the matching surfaces #=0 and % =1u,,
(85) can be transformed to®

5 P. F. Byrd and M. D. Friedmann, “Handbook of Elliptic In-
tegrals for Engineers and Physicists,” Springer Verlag, Berlin.
Germany, Art. 115.02; 1954,
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w=u+j[1 =F, k')/E(k)] (87)
k' = V1 — ke (88)
sin 0’ = (1/k)v/1 — 1/ (89)

Egs. (87), (89), (83), and (81) give the implicit relation
between x and v along the matching surfaces.

Fig. 11 shows the 2 plane for the even mode operation
of the coupled strip line. From it, it can be seen that the
t plane, the ¢’ plane, and the w plane sketches are identi-
cal with the odd mode sketches, except for replacing
ko by k.. Egs. (89) and (86) apply, and by analogy with
(83),

= [K(k)/K(k/)][1 — F0, ko)/K(k)] + j1. (90)
Along v=0, by analogy with (87),
w=u-+ j[1 —FO, k)/K(k.)]. (91)

Eq. (79) applies to Fig. 11 as well as to Fig. 10. When
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it is integrated, and boundary conditions are applied,
the result is

= (¢/m) In [V¥/p + V/(t'/p) — 1),
Along y=0 this can be written as
1 — %, cosh? mx/a

o= . (93)
1-+ k. cosh? ws/2a

(92)

By considering the value of #’ at x=s5/2 and at x=(w
+s/2) the expression for k, can be obtained:

k. = (tanh mw/2a)(tanh 7(w =+ 5)/2a). (94)

Egs. (91), (89), (83), and (93) serve to give the implicit
relation between x and v along y=0.
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The Impedance of a Wire Grid Parallel to a
Dielectric Interface*
JAMES R. WAITt

Summary—Analysis is given for the problem of reflection of a
plane wave at oblique incidence on a wire grid which is parallel to a
plane interface between two homogeneous dielectrics. It is assumed
that the wire grid is a periodic structure and consists of thin cylindri-
cal wires of homogeneous material. The equivalent circuit is derived
where it is shown that the space on either side of the interface can
be represented by a transmission line, and the grid itself is repre-
sented by a pure shunt element across one of the lines.

INTRODUCTION
THERE HAVE been many investigations of the

electromagnetic properties of thin parallel wires

composed of conductive material. The first quan-
titative study was made by Lamb?! in 1898 who con-
sidered the plane wave incident normally on the grid.
He showed that if the diameter, 2¢, of the parallel
wires was small, the reflection and transmission could
be varied by changing the spacing. In 1914, von Igna-
towskyv? made a very exhaustive analysis of the scatter-
ing of incident plane waves by single metallic grids

* Manuscript received by the PGMTT, June 1, 1956.
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